Magnetic resonance imaging is a diagnostic technique which is a safe and painless procedure to scan entire body or a body part. The MRI scanner makes use of powerful magnetic field and radio waves to provide detailed image of the scanned area. Unlike, CT scan and X-ray scan, MRI scanning does not make use of harmful radiation. MRI scans offer greater detail and accuracy over other radiological scans.
Diagnostic MRI: So far, MRI scanning is used for diagnostic purposes to identify the problem and its cause. Diagnostic MRI scans help in planning the course of treatment and surgery, if necessary.
Intraoperative MRI (iMRI/IoMRI): As discussed above, intraoperative MRI is the use of MRI scanning during the surgery. The high resolution images provided by the iMRI system lead to better precision in complicated neurosurgery operations, with the goal of reducing the risk of neurological injury during the procedure, reducing the likelihood of an incomplete resection and the eventual need for reoperation. The system also takes into account the brain shift and the movement of operating areas during the surgery, and gives real-time images, thus cutting down the chances of error drastically.
Normally, patients undergo multiple brain surgeries to cover all the procedures in a stepwise fashion. This is usually because the success of the surgery is diagnosed through regular MRI only after completion of the surgery. But with the advent of iMRI, the surgeon receives images of the surgical site immediately when the patient is on the table. This gives the surgeons and the patients an extra edge to successfully complete the surgery in one sitting. Therefore, one intraoperative MRI brain surgery equates to multiple brain surgeries without iMRI and thus substantially reduces the risks and complications for the patient.
With diagnostic MRI and intraoperative MRI combined, neurosurgeons get the real-time contrast of the diseased area that helps in reconsider marginal tumor resection, take into account the brain shift and check the progress to ensure safe and successful completion. Other than brain surgeries, iMRI is also used for other neurosurgeries, surgical oncology, radiation oncology, and ophthalmology.
Intraoperative magnetic resonance (iMRI) is the MRI diagnostic aid within the operating room for surgeries, especially brain surgeries. MRI scans help in planning the course of treatment and surgery. Intraoperative imaging process is one of the latest and cutting edge technology in neurosurgery. It offers real time picture inside the brain while performing the surgery. The image guidance it helps to minimize the risk of damaging the critical areas of the brain, identify additional resection required, and improve the chances of completing the surgery in a single sitting, successfully.
Brain diseases pose a significant challenge to the neurologists and neurosurgeons. The intraoperative Magnetic resonance imaging offers following advantages:
Some of the challenges in iMRI-enabled brain surgeries are:
Unlike previous models of iMRI suites where the MRI was within the operating room but outside the magnetic field area, the newer models have the MRI in the adjacent room. This allows the MRI to be used as diagnostic MRI for other patients when not in use for surgery. Also it releases more space in the room and enables regular non MRI compatible instruments to be used for surgery, there by minimizing any modification of the operating room.
The patient is operated on a special neurosurgical table whose top can slide easily on to the MRI table with the patient being in the same operative posture. This helps to transfer the patient to the imaging area which is separated by a common door. Before the closure of the wound, the MRI table docks onto the special neurosurgical table top for transferring the patient. The patient is then taken for imaging with the monitors and anesthesia machines carefully in tow. Once the imaging is done the patient is then placed on the table top and slid back to the operating table. The surgery is continued as needed with the additional information obtained from the intraoperative iMRI scan.
MRI is the commonly used diagnostic tool in neurosurgery to confirm the success of the procedure before surgery is complete. The comparison of scans before and during procedure helps the neurosurgeons to decide the course of surgery forward. Hence it is useful in all neurosurgical procedures that require post-surgical evaluation, such as:
The type of surgery is decided based on the type, nature, location and severity of brain disease or damage. Some of the common brain surgeries performed are:
Intraoperative MRI is helpful in brain surgeries that involve surgical corrections/repair, implants, biopsy, electrical stimulation aimed at resolving the problems posed by any brain tumor, cancer, disease, infection or trauma in the patient.
The brain is the centre of the body’s control and coordination in both conscious and unconscious states. However, it is an extremely delicate organ, and prone to long lasting effects from bleeding, infection, trauma and structural damage. As a result, some conditions may require brain surgery i.e neurosurgery, performed by neurosurgeons to diagnose or treat such problems.
Brain diseases present in different forms such as infections, trauma, seizures, stroke, tumors and cancers. These conditions do show signs such as swelling (inflammation), abscess, lesions, internal bleeding, clotting and vessel blockage etc. The patient may need brain surgery in the following cases:
Conclusion:
The brain is the most critical part of the human body. Almost everything we do, think and speak is controlled by our brain. There are several bodily functions that the brain takes care of, even without our notice. Any condition, infection or injury affecting the brain and the nervous system can hamper the simple to complicated daily activities.
Technological advances in the field of neurosurgery have allowed high-field systems and sophistication of 3T MRI to be well integrated with the dedicated surgical suite, neuronavigation system, and digitized image transfer and projection system. This has enabled recovery from brain diseases and significant improvement in the quality of life and survival after brain surgeries.
To know more about intraoperative MRI aided brain surgeries, you can request a call back and our experts will call you and answer all your queries.
References:
About Author –
Dr. Anandh Balasubramaniam, Senior consultant and HOD, Neurosurgery, Yashoda Hospital, is a renowned neurosurgeon in Hyderabad. His expertise include neuro-oncology, intraoperative MRI and image guided neurosurgeries, endoscopic surgeries, endoscopic minimally invasive surgeries, deep brain stimulation and functional neurosurgeries.
Heart failure, also called congestive heart failure, is a condition that arises when the muscles…
Percutaneous Transluminal Coronary Angioplasty, or PTCA, is a minimally invasive surgery that opens blocked or…
Ankle ligaments are crucial cords that link foot bones to lower leg bones, ensuring stability…
Supermarkets today are flooded with a variety of cooking oils, each with different characteristics, such…
మాట్లాడటానికి, తినటానికి మరియు ముఖం అందంగా కనిపించటానికి నోరే కీలకం. శరీర పోషణకు అవసరమైన ఆహారం, పానీయాలు లోపలికి చేరేది…
అండాశయ తిత్తులు అనేవి అండాశయాల లోపల లేదా వాటి ఉపరితలంపై ద్రవంతో నిండిన సంచి లాంటి నిర్మాణాలు. ఆడవారికి రెండు…